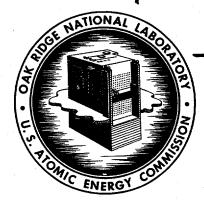
ORNL MASTER CREY

Health and Safety


LABORATORY STUDIES ON THE GROUND
DISPOSAL OF ORNL INTERMEDIATE-LEVEL
LIQUID RADIOACTIVE WASTES

R. L. Blanchard B. Kahn G. G. Robeck

1958

This document has been approved for release to the public by:

Dan A CHambon 8/3/195
Technical Information Officer Date
ORNI. Site

Ado Thi

OAK RIDGE NATIONAL LABORATORY

operated by
UNION CARBIDE CORPORATION
for the
U.S. ATOMIC ENERGY COMMISSION

Table II

Composition of Random Sample of Pit No. 3 Overflow

Collected October 19, 1956

Ionic Composition		Radioactive Composition (1-30-57)	
Ion	<u>Concentration</u>	Radionuclide	Concentration
Na +	ll mg/ml	Cesium	660 x 10 ⁻³ µc/ml*
A1 ⁺³	0.29	Ruthenium	94 ** **
K+	0.15	Cobalt	7 es es
Si ^{+l} 4	0.020	Antimony	ކ 11 84
NH ₃	0.002	Strontium	7 11 11
Fe+3	0.001	Rare earths and Yttrium	7 " "
NO3	21	Zirconium	<u>1</u> 11 11
OH-	2.9	Niobium	13 " "
so ₄ ²	2.1	Gross a	240 c/m/ml
co ₃ ⁻²	1.8	Gross B	132,000 c/m/ml
PO_43	0.20	Gross Y	308,000 c/m/ml
Cl-	0.18	The additional and the second	
Ca+2	0.075	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
Total	Solids 47.		

^{*} Cesium-137, ruthenium-106, cerium-144, and strontium-90 have daughters in radioactive equilibrium; antimony-125, has a daughter which may be in radioactive equilibrium with its parent.

ChemRisk Document No. 3066

INTRA-LABORATORY CORRESPONDENCE

OAK RIDGE NATIONAL LABORATORY

May 16, 1983

Y/HG-0124

M-744

To:

C. R. Richmond

From:

T. W. Oakes 7. W. Oakes

Subject:

Literature Information on Mercury

As discussed by telephone on the afternoon of May 13, I have attempted to put together data pertinent to the information of mercury releases at Y-12. This information is provided in the attachments.

TWO:aw

xc: H. H. Abee

1. Het intempherie Levela along creek.

2. Characteries sedement samples as to metalie to Methyl —

3. Fredy to rate for hazard study - morganic mercury hayard from injection.

4- analyze perimeter bleghed of filters on the

APPROVED FOR PUBLIC RELEASE

Technical Information Office

Date

LEGISLATION AND RECOMMENDED LEVELS

THE JOINT F.A.O./W.H.O. EXPERT COMMITTEE ON FOCD ADDITIVES (1972)

- RECOMMENDED THAT FOR MERCURY, THE PROVISIONAL TOLERABLE WEEKLY INTAKE BE SET AT

TOTAL MERCURY

0.3 MG/PERSON

0.005 MG/KG BODY WEIGHT

METHYL MERCURY EXPRESSED AS MERCURY

0.2 MG/PERSON

0.0033 MG/KG

- THESE FIGURES RELATE TO INTAKE FROM ALL SOURCES INCLUDING FOOI DRINKING-WATER, AND RESPIRED AIR

THE WORLD HEALTH ORGANIZATION PROPOSED (W.H.O. 1971) AN UPPER LIMIT FOR MERCURY IN DRINKING-WATER OF

- 1.0 µG/L 0.001 PPM BY WEIGHT

OCCUPATIONAL EXPOSURE

- THRESHOLD LIMIT VALUE (TLV) GIVEN BY ACGIH FOR ALL FORMS OF MERCURY OTHER THAN ALKYL COMPOUNDS IS
 - -0.05 MG/M^3
- TLV FOR ALKYL MERCURIC COMPOUNDS IS
 - 0.01 MG HG/M³

LEGISLATION AND RECOMMENDED LEVELS

WORLD HEALTH ORGANIZATION (1979)

0.025 Mg/M3 LONG-TERM EXPOSURE

SHORT-TERM EXPOSURE NOT EXCEEDING 15 MIN. 0.5 Mg/M^3

EPA INTERIM PRIMARY DRINKING WATER REGULATION 0.002 MG/L

EPA CLEAN WATER ACT (P.L. 95-217) HG AND COMPOUNDS ARE HAZARDS TENNESSEE WATER QUALITY STANDARD

50 PPB

FDA FISH STANDARD

1 PPM

RCRA STANDARD

*EXAMPLE NPDES PERMIT FROM STATE OF TENNESSEE

NPDES # TN0005444

TVA - JOHNSONVILLE STEAM PLANT

NO DISCHARGE FOR PCB

NPDES FOR HOLSTON ARMY AMMUNITION PLANT (KINGSPORT)

AREA A

HG - DAILY AVERAGE CONCENTRATION OF HG NOT TO EXCEED 0.005

AREA B

DAILY AVERAGE CONCENTRATION HG NOT TO EXCEED 0.005 MG/L INST. MAX. CONCENTRATION NOT TO EXCEED 0.05 MG/L

EAST FORK POPLAR CREEK (EFPC)* MAX

BLUEGILL

3.6 PPM

LARGEMOUTH BASS

1.3 PPM

ROCK BASS

0.87 PPM

BEAR CREEK (BC)*

BLUEGILL

0.51 PPM

ROCK BASS

1.2 PPM

FROM ORNL/CF-82/257

NEW HOPE POND MAX SEDIMENT

NHP-14

302 PPM

EAST FORK POPLAR CREEK MAX FOLIAGE

LIVE 0.23 PPM

DEAD 6.9 PPM

SEDIMENT SAMPLING DATA ★

U 1% U-235, 99% U-238 in secular equilibrium with U-234 1006 ppm } 163 ppm } 1974 1974 Th 1974 171 ppm 37 ppm "Nat" 232 and 228 1974 Pu Pu-238 Pu-239/-240 10 pCi/gm² <8 pCi/gmr 1982 1982 pCi/gm 1982 0.014 pCi/gm 1974 Hg 1982 480 ppm 1982 240 ppm 1248 PCB 1974 1974 0.6 ppm

0.3 ppm

Data From DOE

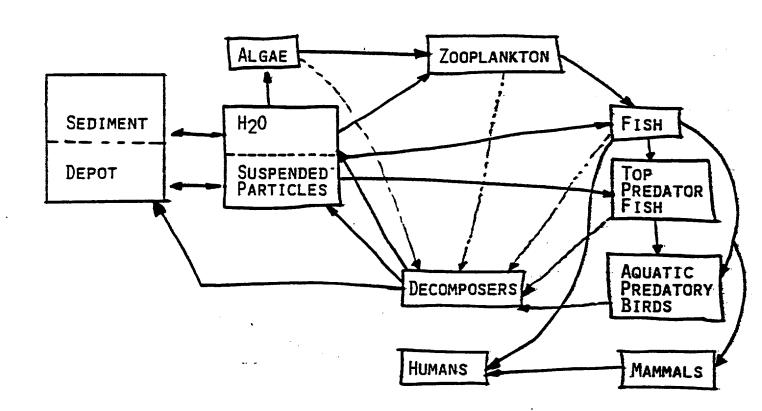
PHYSICAL AND CHEMICAL PROPERTIES

MERCURY IS THE ONLY METAL WHICH EXISTS IN THE LIQUID STATE BELOW 0°C .

ATOMIC WEIGHT OF 200.6

ATOMIC NUMBER OF 80

MELTING POINT -39.9 OC


BOILING POINT 365.9 °C

OXIDATION OF MERCURY FORMS EITHER MERCUROUS OF MERCURIC VALENCE STATES

FORMS

- ELEMENTAL
- MERCUROUS AND MERCURIC SALTS
- MERCURY FORMS A GROUP OF ORGANOMETALLIC COMPOUNDS

FOOD CHAIN MODEL FOR MERCURY*

*HARTUNG, 1972 - ANN ARBOR SCIENCE PUBLISHERS

U.S. AVERAGE DATA*
(ppb)

-	Soil Mean	Sediment	Drinking Water	Surface Water	
Hg	0.071 ppm		<0.5 - <1.0 ppb	0.1-20 ppb	
PCB	•	2.2-48.2		0.006-0.12	

*EPA-600/45-82-030a, May 1982 Environmental Monitoring at Love Canal, Volume I

The PCB water quality criterion is 0.001 μ g/1 for the protection of aquatic life - quality criteria for water (EPA 1976)

MERCURY CONCENTRATIONS IN SEDIMENTS OF RIVERS AND STREAMS IN NORTH AMERICA

RIVER	MAX. CONC.	Source	REFERENCE
ST. LAWRENCE	0.18 PPM	INDUSTRIAL	JOHNSTON (1977)
OSWEGO	0.67 PPM	INDUSTRIAL	FITCHKO & HUTCHINSON (1975)
OTTAWA	3.0 PPM	PULPWOOD MILL	RUST & WASLENCHUK (1974)
ISLAIS (CREEK)	6.9 PPM '	INDUSTRIAL	SMITH (1972)
STREAM IN TAYLOR MTS. (ALASKA)	10.0 PPM	MINING INDUSTRY	CLARK ET AL. (1970)
TENNESSEE RIVER (NORTH FORK)	32 PPM	CHLOR-ALKALI INDUSTRY	DERRYBERRY (1972) TURNER & LINDBERG (1978)
ST. CLAIR RIVER	60 PPM	CHLOR-ALKALI INDUSTRY	CLINE ET AL. (1973)
DETROIT RIVER	86 PPM	CHLOR-ALKALI INDUSTRY	TURNEY (1971)

CHEMICAL PATHWAYS

ALL FORMS OF MERCURY ARE SUBJECT TO CHEMICAL TRANSFORMATION IN THE NATURAL ENVIRONMENT.

METALLIC MERCURY IS OXIDIZED IN WATER TO THE DIVALENT MERCURIC ION Hg²⁺

MUCH OF THIS IS PRECIPITATED AS INSOLUBLE MERCURIC SULFIDE.

ESPECIALLY IN AN AEROBIC ENVIRONMENTS WHERE HYDROGEN SULFIDE IS

LIKELY TO BE PRESENT, ALTHOUGH EVEN THE INSOLUBE SULFIDE MAY BE

OXIDIZED TO THE SULFATE, RELEASING THE MERCURIC ION AGAIN.

ANOTHER IMPORTANT REACTION MAY INVOLVE THE DIVALENT MERCURIC ION, A BIOLOGICAL PROCESS IN WHICH THE ION IS METHYLATED TO MONOMETHYL OR DIMETHYL MERCURY.

- JENSEN AND JERMELON (1969) SHOWED THAT SUCH METHYLATION MAY
 OCCUR IN THE SEDIMENTS OF FRESH WATER BY MEANS OF ANAEROBIC
 METHYL GROUP DONATING BACTERIA.
- SEVERAL BACTERIAL GENERA, FUNGI AND OTHER SPECIES ARE CAPABLE OF THIS METHYLATION REACTION, WHICH IS ENHANCED IN GENERAL BY CONDITIONS WHICH FAVOR MICROBIOLOGICAL ACTIVITY.

TOXIC TRACE METALS IN MAMMALIAN HAIR AND NAILS*

MERCURY

BLOOD

0.005 PPM

HAIR

1.5 PPM

REPORTED LEVELS IN HAIR - 0.01-2,436 PPM NORMAL RANGE - 0.01-30.0 PPM THRESHOLD EFFECTS - 50-200 PPM ACUTE OR CHRONIC EFFECTS - 200-800 PPM DEATH - 500 PPM(+)

METHYL HG IS HIGHLY TOXIC, MERCURY POISONING, MINAMATA DISEASE; CAUCSES CONGENITAL ABNORMALITIES. HIGH LEVELS OF HG IN HAIR HAVE BEEN CORRELATED WITH HG POISONING WITH SYMPTOMS OF BLINDNESS. CONVULSIONS AND DEATH.

EPA 600-/4-79-049 AUGUST 1979

D. W. TENKNI

UKITA (1968) AND AL-SHAHRISTANI AND AL-HADDAD (1972) CHARACTERIZED AVERAGED "NORMAL" LEVELS OF HG. IN HAIR TO BE: 4-6 PPM IN NORTH-AMERICA: